Sharing on buildability requirements and submissions in CORENET X

No. of Slides: 35

Privileged/Confidential information may be contained in this presentation. Please do not circulate or reproduce without the permission of BCA.

Outline

- Recap on Buildability Requirements and Submission
- CORENET X Gateway Process for Buildability
- CORENET X Submission Portal
- BIM submission in CORENET X
- Learning Points

Current Buildability Submission Procedure

- 1. Buildable Design Score (B-Score) and the Buildability Detailed Design and Implementation Plan (BDIP) are key documents required for Buildability compliance
- Submissions are to be made and endorsed by Qualified Persons/PEs (Architect, Structural Engineer, M&E Engineer) at the following stages:
 - Building Plan (BP) stage
 - Temporary Occupation Permit (TOP)/Certificate of Statutory Completion (CSC) stage
- 3. B-Score for building works must meet the stipulated minimum requirement
- 4. QPs and PEs must submit BDIP to substantiate the extent of use of Design for Manufacturing and Assembly (DfMA), building systems etc to be/have been implemented in the project, which are as computed in the B-Score form for the building works

Buildability Requirements (COP on Buildability 2022)

Compliance Approach	Requirements for each compliance approach	
1. Code compliance option	Meeting <u>minimum B-Score</u> using Buildable Design Appraisal System (BDAS)	Meeting pre-requisite requirements as follows:
2. Outcome-based option for large projects (GFA ≥ 25,000m²)	 a. <u>Deemed acceptable solutions</u> High prefabrication levels E.g. Residential non-landed projects: Structural: 65% Prefab Archi: 80% Prefab MEP: 50% Prefab System Formwork: 70% 	 For all projects a. Floor mesh b. Repetition of typical floor height c. Industry standard precast staircase for typical storeys d. Prefabricated and pre-insulated duct for air-conditioning system
	 DfMA adoption E.g. Residential non-landed projects: 60% PPVC + 70% System Formwork or 50% PPVC (≤ 5-storey) + 70% System Formwork 	For all Residential Non-Landed projects a. Drywall b. Precast household shelters (HS) c. Industry standard precast HS d. Prefabricated Bathroom Units (PBU) e. Industry standard PBUs f. Industry standard door structural
	 b. Open Option Proposal demonstrating min. 25% productivity improvement 	g. Industry standard precast refuse chutes

Productivity requirements for projects sold under the Government Land Sales (GLS) Programme

Type of Development	Requirements	
Residential non-landed (including Executive Condominium)	Min 65% adoption of Prefabricated Prefinished Volumetric Construction (PPVC) Min 65% adoption of Prefabricated Mechanical, Electrical and Plumbing (PMEP) Min 70% adoption of system formwork	
Hotel	Min 65% adoption of PPVC Min 65% adoption of PMEP Min 70% adoption of system formwork	
Office	 Min 80% adoption of Structural Steel Min 65% adoption of PMEP Min 70% adoption of system formwork 	
Selected sites	 Min 30% productivity improvement (compared to 2010 level) Min prefabrication levels: 	
	Structural 65% (min. Advanced Precast Concrete System)	
	Architectural 80%	
	PMEP 65%	
	System Formwork 70%	

 GLS requirements are over and above the minimum buildability requirements and must be complied with when making submissions

CORENET X Gateway Process for Buildability

QPs/Builders are involved in the various gateways:

- 1. Pre-submission consultation, waiver (optional)
- 2. Construction Gateway Buildability submission
- Independent Submissions Constructability Score (C-Score)
- 4. Completion Gateway As-built B-Score and C-Score*

*Note: Project teams are strongly encouraged to submit B-Score and C-Score for clearance prior to TOP application (e.g. 2 months ahead) to ensure timely issuance of TOP

① Design Gateway

Critical Design Parameters

② Construction Gateway

Detailed Design Requirements (multi-agencies)

(Independent Submissions)

Independent technical requirements that are agency-specific

③ Completion (Occupancy Permit/ Stat. Completion)

Completion & compliance to Approved Design

Construction

Constructability submission

Documents required for CORENET X submission

Gateways	Documents required
Construction Gateway	a. Calculations of Buildable Design Score (BS01)b. BDIP / Productivity Plans^c. For items that cannot be modelled in BIM, 2D plans can be submitted
Independent Submission	a. C-Score calculation form b. Constructability Implementation Plan (CIP)
Completion Gateway* *prior to TOP application	 a. As-built Calculations of Buildable Design Score (BS03) b. As-built BDIP /Productivity Plans c. As-built C-Score calculation form d. As-built CIP e. Certificate of Compliance for Constructability Score (CCS01)

[^] BDIP refers to Buildability Detailed Design and Implementation Plan. Productivity Plans include Productivity Concept Implementation Plan (PCIP)

① Design Gateway

Critical Design Parameters

② Construction Gateway

Detailed Design Requirements (multi-agencies)

(Independent Submissions)

Independent technical requirements that are agency-specific

3 Completion

(Occupancy Permit/Stat. Completion)

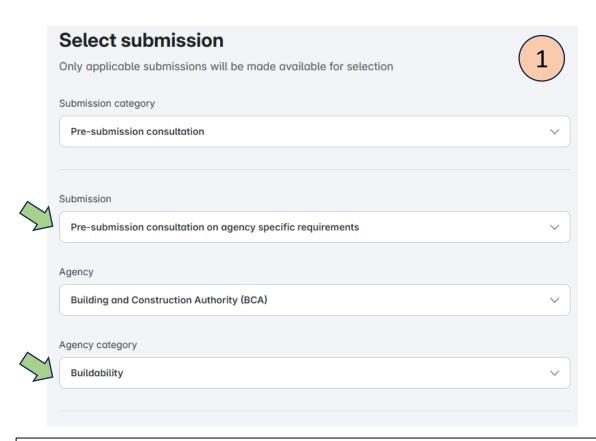
Completion & compliance to Approved Design

construction

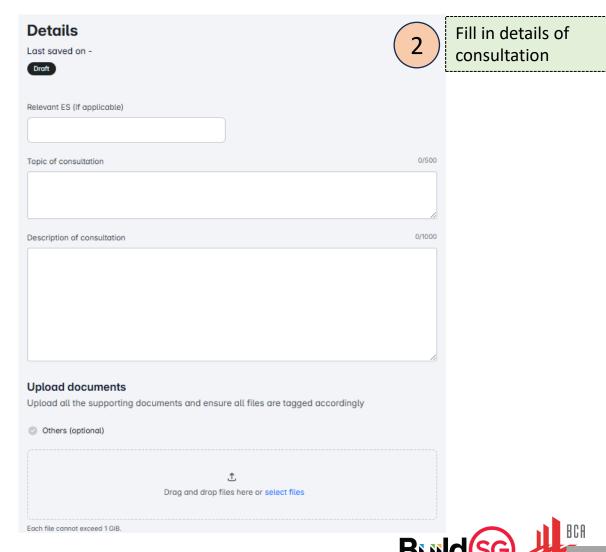
Constructability submission C-Score + CIP

As-built submission

BS03 + BDIP / Productivity Plans + C-Score + CIP + CCS01



^Note: Pre-submission consultation may be initiated at any stage prior to submission.


Buildability submission BS01 + BDIP / Productivity Plan

Pre- submission consultation — Buildability

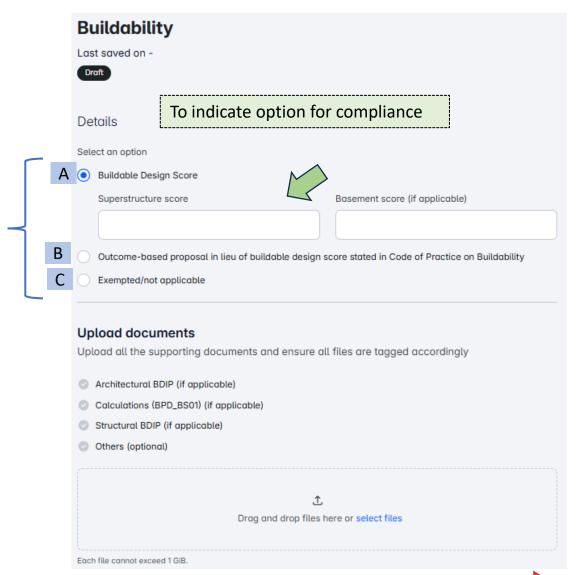
For buildability, constructability and productivity related matters (e.g. Productivity Concept Implementation Plan (PCIP), Integrated Digital Delivery, consultation request can be made by selecting agency specific requirements

Besides initiating consultation requests via CX, QPs/Builders can also email the relevant Processing Officer (PO) of your project for direct consultation

Construction Gateway – Buildability

QP to select one of the following options when making submission

A. Buildable Design Score (B-Score):

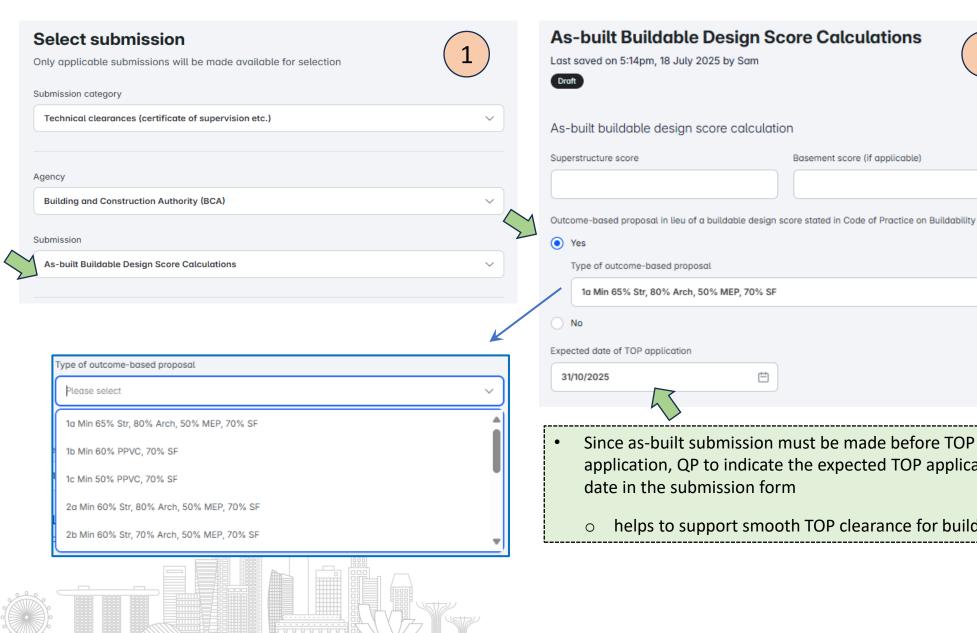

 For project adopting code compliance code option, to select 'Buildable Design Score' and fill in the Superstructure score and basement score (if applicable)

B. Outcome-based proposal:

 For large projects (GFA ≥ 25,000m²) choosing the outcome-based approach, to select 'Outcome-based Proposal'

C. Exemption / B-Score not applicable

 For projects that are exempted or where buildability requirements are not applicable


Construction Gateway – Buildability

 Architectural BDIP (if applicable) Calculations (BPD_BS01) (if applicable) Structural BDIP (if applicable) Others (optional) 	✓ Calc✓ Structure	itectural BDIP (if applicable) ulations (BPD_BS01) (if applicable) ctural BDIP (if applicable) rs (optional)	
<u>†</u> Drag and drop files here or select files		Buildability	Туре
buildability-framework-cop2022_bs01.xlsx 346.04 KiB • 18 Jul 2025 Type of attachment		Code Compliance Option	CaArSt
	·		• Ot
Architectural BDIP (if applicable) Calculations (BPD_BS01) (if applicable) Structural BDIP (if applicable) Others (optional)		Outcome-based option	• Ca ch • Ot Pr (P

Submit the relevant documents accordingly (see table below)

Buildability	Type of documents / attachment	
Code Compliance Option	Calculation (BS01)	
	Architectural BDIP	
	Structural BDIP	
	Others – MEP BDIP	
Outcome-based option	 Calculation (BS01) – to indicate option chosen and compliance to pre-requisites Others – Deemed Acceptable Proposal/ 	
	Project Productivity Improvement Plan (PPIP)	
GLS projects	Calculation (BS01)	
	Others – Productivity Concept (2012)	
	Implementation Plan (PCIP)	

As-built B-Score application

- To fill in as-built B-Score
- indicate 'Yes' to outcome-based option if project has adopted this approach instead of Code Compliance Option, and to select the type accordingly

- Since as-built submission must be made before TOP application, QP to indicate the expected TOP application
 - helps to support smooth TOP clearance for buildability

As-built B-Score application

Submit the relevant documents accordingly (see table on the right)

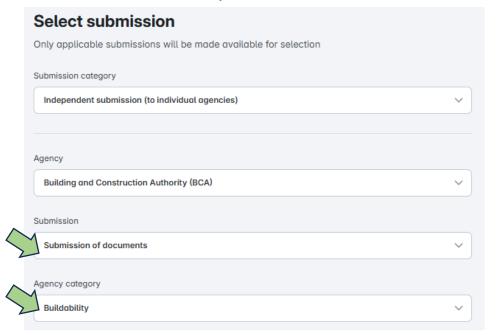
Upload documents Upload all the supporting documents and ensure all files are tagged accordingly Architectural Buildability Detailed Design and Implementation Plans (BDIP) Calculations (BPD_BS03) Structural BDIP Deemed Acceptable Proposal (if applicable)

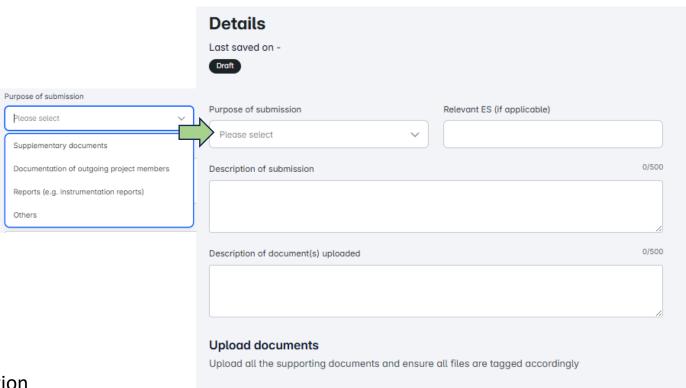
Project Productivity Improvement Plan (if applicable)

Mechanical, Electrical and Plumbing (MEP) BDIP (if applicable)

Others (optional)

Drag and drop files here or select files


Each file cannot exceed 1 GiB.


Buildability	Type of attachment
Code Compliance Option	 Calculation (BS03) Architectural BDIP Structural BDIP MEP BDIP (if applicable)
Outcome-based option	 Calculation (BS03) Others – Deemed Acceptable Proposal/ Project Productivity Improvement Plan (PPIP)
GLS projects	 Calculation (BS03) Others – Productivity Concept Implementation Plan (PCIP)

Submission of Documents for Buildability

'Submission of Documents' provides a channel for QPs to submit and communicate buildability-related documentation

Drag and drop files here or select files

Submission document

Each file cannot exceed 1 GiB

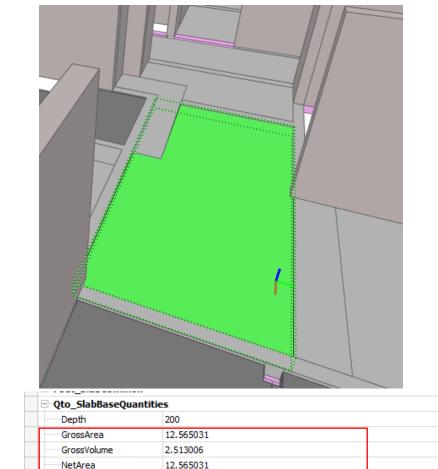
Others (optional)

Types of Submission via Submission of Documents include:

- 1. Changes to productivity plans e.g. prefabricated MEP adoption
 - a. Updates to the types or extent of prefabricated MEP systems being used
 - b. Revisions to the coverage of prefabricated MEP components
- 2. Supporting documents for B-Score verification such as
 - a. Details of pump skid size dimensions
 - b. Drawings showing mechanical connections between precast components
- 3. Changes to the extent of system formwork being adopted

BIM submission in CORENET X

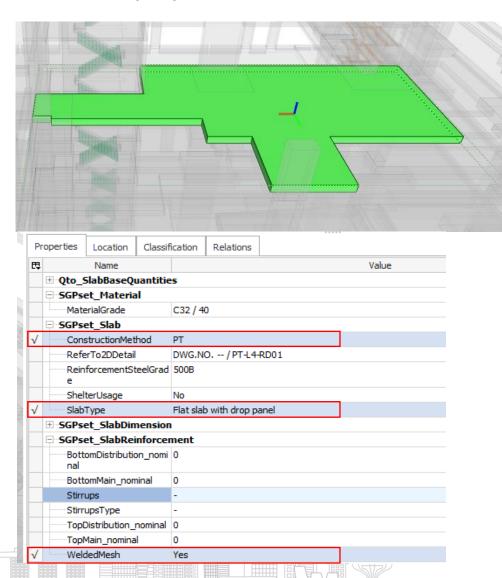
BIM submission in CORENET X

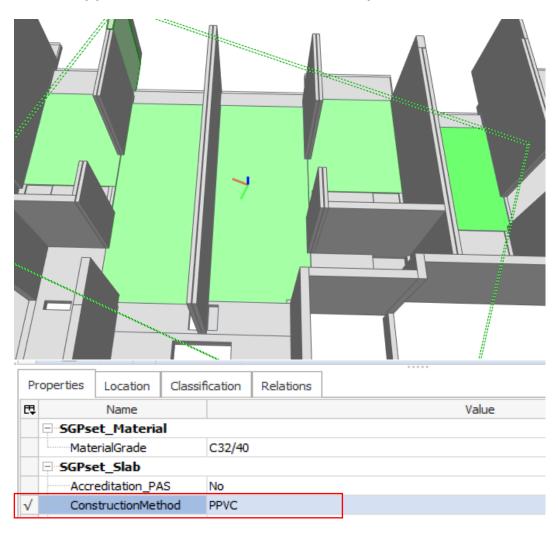

- 1. Starting 1 October 2025, all new projects with GFA of at least 30,000 m² must submit through CORENET X.
- 2. BIM submissions via CORENET X is required to :
 - a. Ensure cross-discipline model coordination with correct Easting and Northing (x,y) coordinates and grid dimensions, standardised level and zone naming for proper alignment across disciplines
 - b. Ensure all models are in IFC-SG format and comply with Corenet X COP
- 3. Incorporate buildability attributes for features such as precast components, prefabricated reinforcement, industry-standard sizes and other construction elements in the submission

Examples of IFC properties tagged to element - IFC-SG: IfcSlab

IFC-SG properties for IfcSlab to be included when preparing structural model for submission:

IFC Entity	IfcSlab	
S/N	IFC-SG Property	Examples
1.	ConstructionMethod	CIS/ PC/ PT (Pre)/ PT (Post)/PPVC/ Prefab
2.	Area^	12.56
3.	Volume^	2.51
4.	WeldedMesh	True / False
5.	LatticeGirderReinforcement	True / False

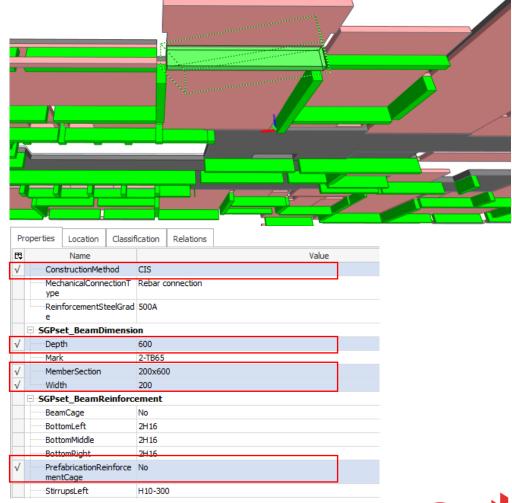

2.513006 51.341599 200



[^] These properties can be automatically generated from model's Quantity Take-off (Qto) parameters

IFC-SG: IfcSlab

Example of IFC-SG properties such as ConstructionMethod, SlabType and WeldedMesh adopted for IfcSlab:

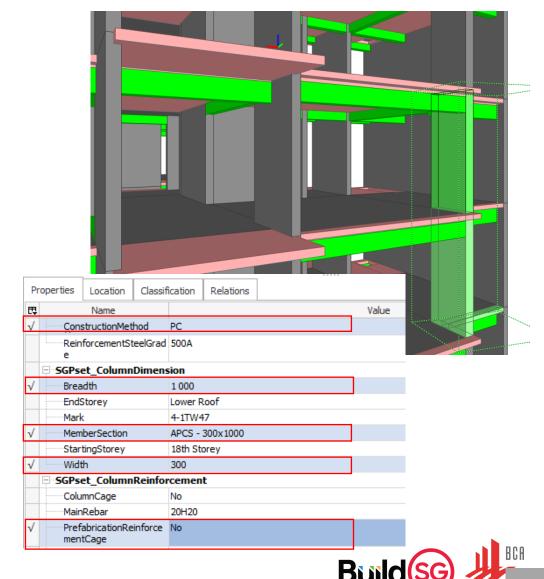


Examples of IFC properties tagged to element: IFC-SG: IfcBeam

IFC-SG properties for IfcBeam to be included when preparing structural model for submission:

IFC Entity	IfcBeam		
S/N	IFC-SG Property	Examples	
1.	ConstructionMethod	CIS/ PC/ PT (Pre)/ PT (Post)/PPVC/ Prefab	
2.	Depth	600	
3.	Width	200	
4.	PrefabricatedReinforcementCage	True / False	
5.	MechancialConnectionType	Telescopic Beam Connector, grouted sleeves	
6.	Volume^	0.94	

[^] These properties can be automatically generated from model's Quantity Take-off (Qto) parameters



Examples of IFC properties tagged to element - IFC-SG: IfcColumn

IFC-SG properties for IfcColumn to be included when preparing structural model for submission:

IFC Entity	IfcColumn		
S/N	IFC-SG Property	Examples	
1.	ConstructionMethod	CIS/ PC/ PT (Pre)/ PT (Post)/PPVC/ Prefab	
2.	Width	300	
3.	Breadth	1000	
4.	MechancialConnectionType	Column shoes, grouted sleeves, spiral connector	
5.	PrefabricatedReinforcementCage	True / False	
6.	Volume^	0.94	

[^] These properties can be automatically generated from model's Quantity Take-off (Qto) parameters

Examples of IFC properties tagged to element - IFC-SG: IfcWall

IFC-SG properties for IfcWall to be included when preparing structural model for submission:

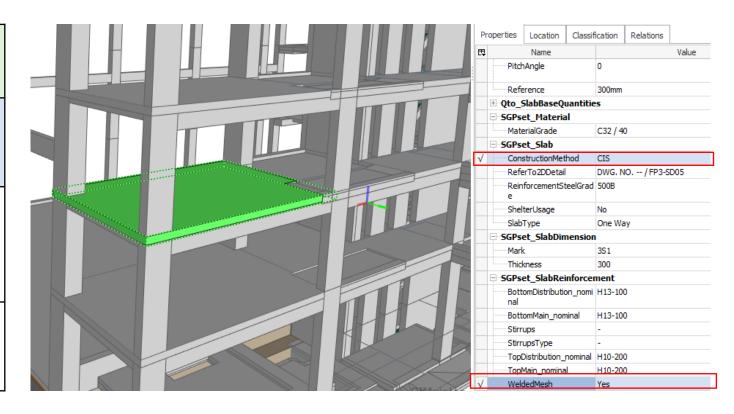
IFC Entity	IfcWall	
S/N.	IFC-SG Property	Examples
1.	ConstructionMethod	CIS/ PC/ PT (Pre)/ PT (Post)/PPVC/ Prefab
2.	Length^	5900
3.	Thickness	200
4.	MechancialConnectionType	Grouted sleeves, spiral connector, flexible loops
5.	PrefabricatedReinforcementCage	True / False
6.	Volume^	0.5

[^] These properties can be automatically generated from model's Quantity Take-off (Qto) parameters

IFC-SG Requirements: Buildability Pre-requisites

Pre-requisites

All projects must satisfy the pre-requisites below and 3D model to include their IFC-SG properties accordingly

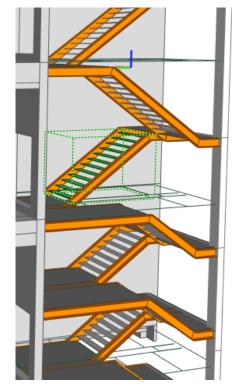

For all projects	
S/N	Description
1.	Floor mesh
2.	Repetition of typical floor height in multiples of 1.5M or 1.75M
3.	Industry standard precast staircase for typical storeys
4.	Prefabricated and pre-insulated duct for air-conditioning system
For all Residential Non-Landed projects	
5.	Drywall
6a.	Precast household shelter (HS)
6b.	Industry standard precast household shelter
7a.	Prefabricated Bathroom Unit (PBU)
7b.	Industry standard Prefabricated Bathroom Unit
8.	Industry standard door structural openings (width) (3 most common sizes)
9.	Industry standard precast refuse chutes

Floor mesh – IfcSlab

IFC-SG requirements in IfcSlab entity to demonstrate the adoption of floor mesh in BIM model

IFC Entity: IfcSlab		
S/N	IFC-SG property	Examples
1.	ConstructionMethod	CIS, PC, PPVC and etc
2.	WeldedMesh	True or False

Note: IFC-SG properties must be correctly assigned to show that floor mesh is adopted in 65% of cast in-situ slabs



Precast staircase for typical storeys – IfcStairFlight

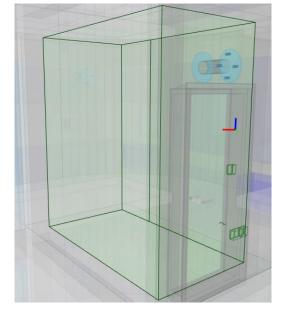
IfcStairFlight - IFC-SG requirements to demonstrate the use of precast staircases for typical storeys in the BIM model

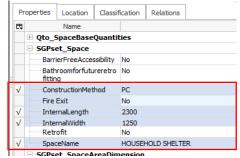
IFC Entity: IfcStairFlight				
S/N	IFC-SG property	Examples		
1.	ConstructionMethod	CIS, PC, Prefabricated (PF)		
2.	RiserHeight	150mm or 175mm		
3.	TreadLength	250mm, 275mm or 300mm		

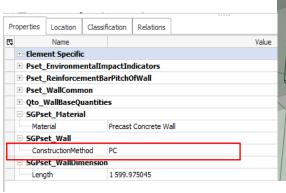
Pr	operties	Location	Classificat	ion	Relations		
TĮ.		Name				Value	
	□ Profile						
	ProfileName			eel Flig	ght		
	□ Profile						
	ProfileName			eel Flig	ght		
	Pset_	Environme	entalImpa	ctInc	licators		
	Reference			eel Flig	ght		
	Pset_	StairFlight					
	Nosi	·····NosingLength		10			
	Num	berOfRiser	13	13			
	Num	mberOfTreads		12			
	Reference			Steel Flight			
√	RiserHeight			5			
√	TreadLength			250			
	Trea e	dLengthAtIr	nnerSid 25	0			
	TreadLengthAtOffset			250			
	⊕ Qto_StairFlightBaseQuantities						
	□ SGPset_Material						
	MaterialGrade			S355			
	∃ SGPs	et_Stair					
√	ConstructionMethod						
	Refe	rTo2DDetail	DV	VG. N	O/ST2-D	T01	
	SectionFabricationMeth od			Hot rolled			

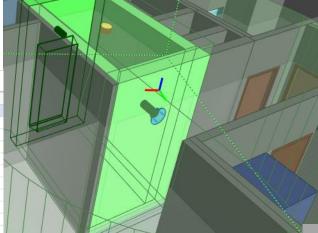
Note: IFC-SG properties must be consistent across typical storeys to show compliance to the 80% precast stair flight requirement with standard dimensions

Precast Household Shelter – IfcSpace, IfcWall, IfcSlab


IFC-SG in IfcSpace, IfcWall and IfcSlab - to demonstrate adoption of precast household shelter (HS) and industry standard sizes in BIM model. Internal dimensions must be specified for all HS


Ifc Entity	IfcSpace		
S/N	IFC-SG property	Examples	
1.	SpaceName	Household shelter	
2.	ConstructionMethod	CIS/ PC	
3.	InternalLength	2300	
4.	InternalWidth	1250	

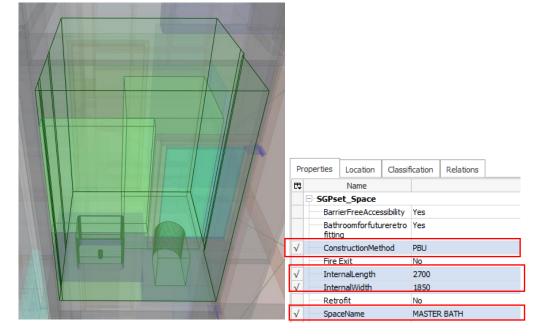

Ifc Entity	IfcWall, IfcSlab				
S/N	IFC-SG property Examples				
1.	ConstructionMethod	CIS/ PC			
2.	Thickness	250/ 300			

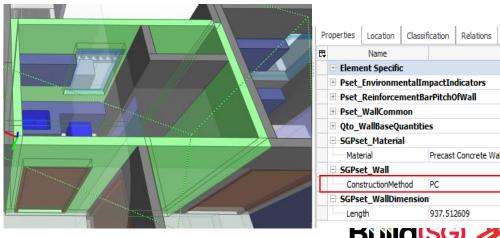

Notes:

- Ensure all household shelter spaces are tagged with IFC-SG properties, including dimensions, to show both precast and compliance to industry standard sizes
- 2. Check that the ConstructionMethod property is aligned across all household shelters for IfcSpace and IfcWall components to avoid discrepancies between different elements.

Prefabricated Bathroom Unit (PBU) – IfcSpace, IfcWall, IfcSlab

IFC-SG in IfcSpace, IfcWall and IfcSlab - to demonstrate the adoption of PBUs in the BIM model. Internal dimensions must be

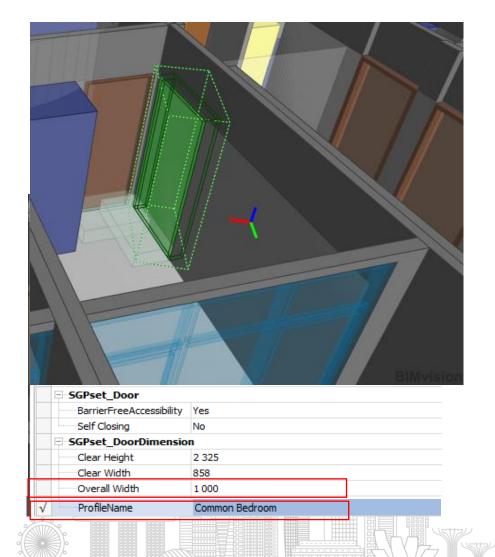

specified for all bathrooms


Ifc Entity	IfcSpace			
S/N	IFC-SG property Examples			
1.	SpaceName	Master Bath, Maid Bath, Toilet		
2.	ConstructionMethod	CIS/ PBU		
3.	Accreditation_MAS	True/False		
4.	InternalLength	2700		
5.	InternalWidth	1850		

Ifc Entity	IfcWall, IfcSlab		
S/N	IFC-SG property Examples		
1	ConstructionMethod	CIS/ PC / Prefabricated	

Notes:

- Ensure all bathroom spaces are tagged with the required IFC-SG properties, including dimensions, to show PBU adoption and compliance to industry standard sizes
- 2. Check that the ConstructionMethod property is aligned across all bathrooms for IfcSpace, IfcWall and IfcSlab components to avoid discrepancies between different elements

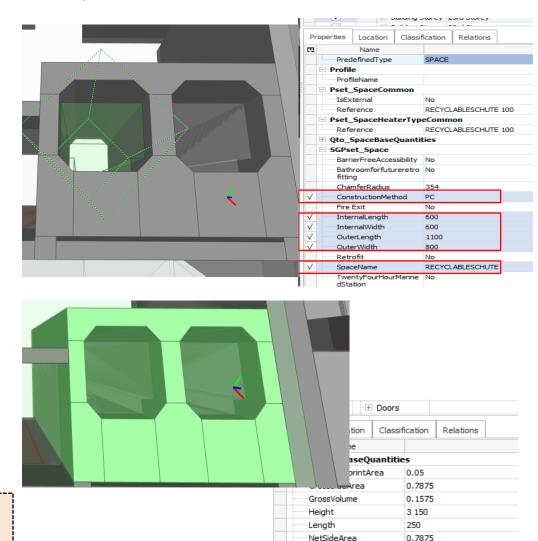


Industry standard door structural openings – IfcDoor

IFC-SG requirements for IfcDoor - to demonstrate the adoption of Industry standard door structural openings in BIM model

Ifc Entity	IfcDoor			
S/N	IFC-SG property	Examples		
1.	OverallWidth	1000		

Industry standard Precast Refuse Chutes – IfcSpace, IfcWall


IFC-SG requirements for IfcSpace and IfcWall - to demonstrate the adoption of Industry standard Precast Refuse Chutes in BIM model

Ifc Entity	IfcSpace			
S/N	IFC-SG property	Examples		
1.	SpaceName	RefuseChute, RecyclablesChute		
2.	ConstructionMethod	CIS/ PBU/ Prefabricated		
3.	InnerLength	600		
4.	InnerWidth	600		
5.	OuterLength	1100		
6.	OuterWidth 800			
7.	ChamferRadius	354		

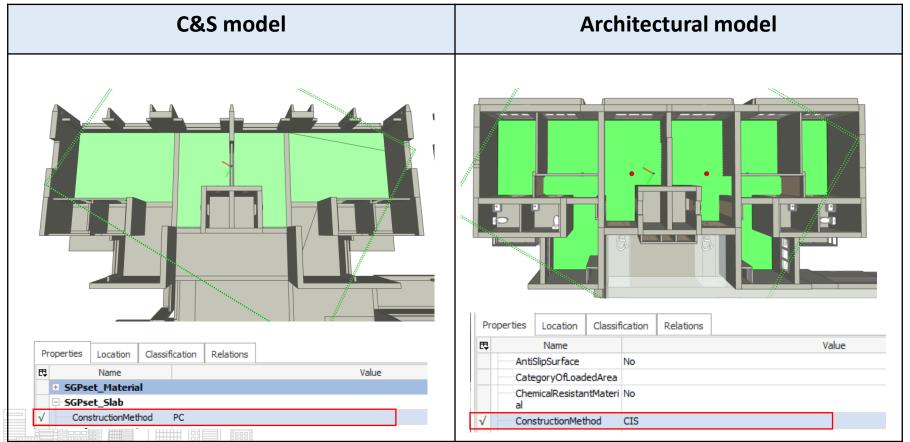
Ifc Entity	IfcWall IFC-SG property Examples			
S/N				
1.	ConstructionMethod	CIS/ PC		
2.	Thickness	100/ 150 / 200		

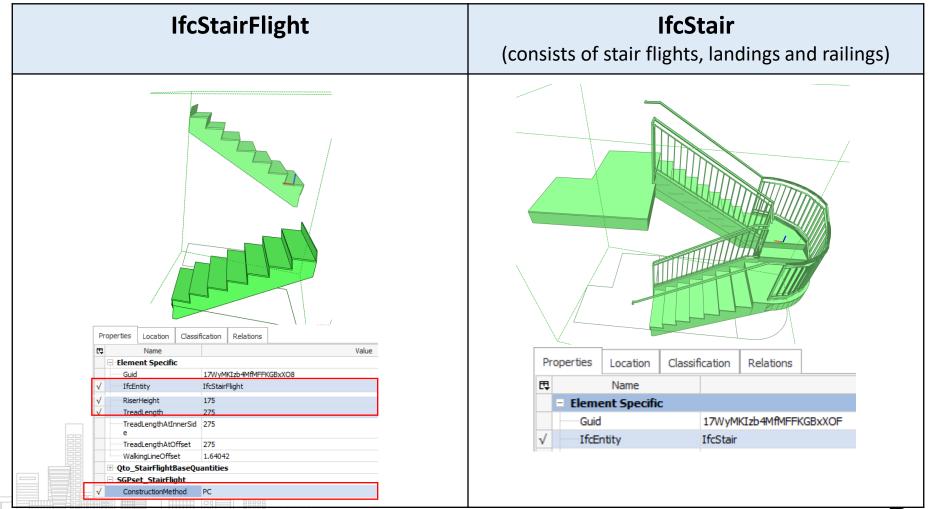
Notes:

- 1. Ensure all refuse chutes spaces are tagged with the required IFC-SG properties, including dimensions, to show both precast and compliance to industry standard sizes
- 2. Check that the ConstructionMethod property is aligned across all refuse chutes for IfcSpace and IfcWall components to avoid discrepancies between different elements

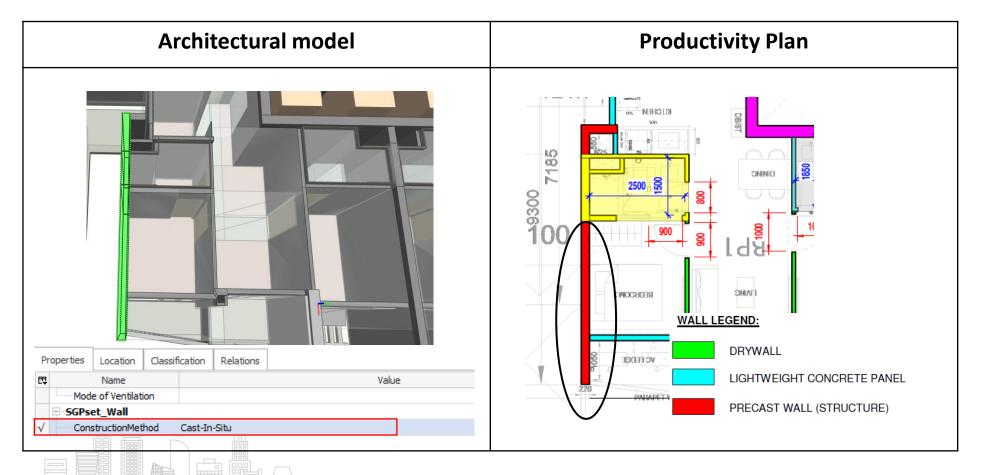
0.1575

SGPset Wal

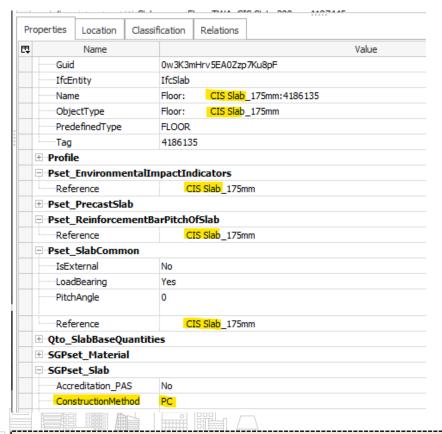



1. Ensure alignment of properties between the architectural and structural models, including construction methods

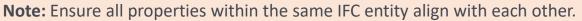
o In example below for slab, there was a discrepancy in the ConstructionMethod for IfcSlab, which was indicated as 'precast' in the structural model but 'cast in-situ' in the architectural model


2. Missing construction method for IfcStairFlight

This is required as buildability requirements for precast staircases are applicable to stair flights

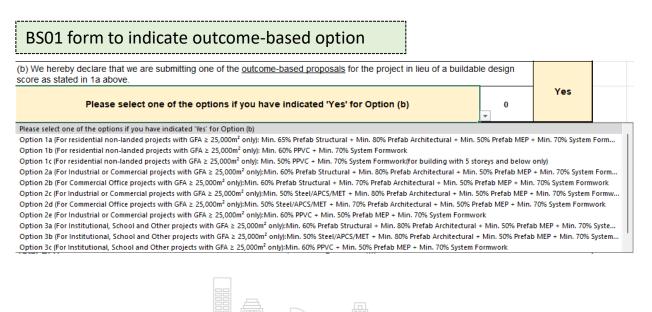

3. Verify consistency between Productivity Plan submitted and BIM model

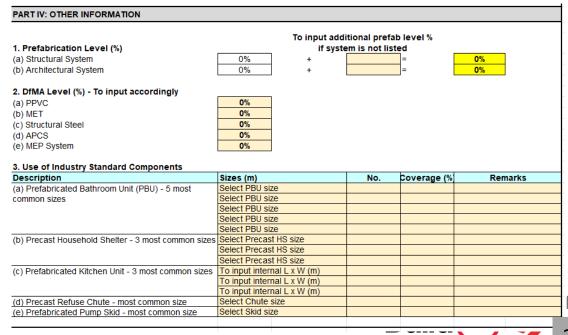
In the architectural model, the ConstructionMethod was indicated as 'cast in-situ', but 'precast' in the productivity
plan



Inconsistency in properties under IFC entities 4.

- ConstructionMethod was specified as precast under IfcSlab, while other properties within the same IFC entity indicated cast in-situ.
- Similarly, for IfcStairFlight, the 'name' property showed 'Cast-In-Place Stair' while the 'Material' property specified 'Precast Concrete'




Pr	operties	Location	Classificat	ion	Relations			
ij		Name					Value	
	= Eleme	ent Specific	:					
				2d7KEg\$9PEEhRcTeCe6FRT				
				IfcStairFlight				
	·····Nam	ie	Ca	Cast-In-Place Stair: Stair: 1636057 Run 1				
	Obje	ectType	-					
	Pred	definedType	ST	STRAIGHT 1636058				
	Tag		16					
	□ Pset_	Environme	entalImpa	ctIn	dicators			
	Reference Reference NosingLength			Monolithic Run				
	Num	berOfRiser	13	13				
	Num	berOfTreads	12	12 Monolithic Run				
	Refe	erence	Mo					
	Rise	rHeight	17	5				
	Trea	adLength	25	0				
	TreadLengthAtInnerSid e		nerSid 25	0				
	Trea	dLengthAtO	ffset 25	0				
	Wall	kingLineOffse	et 1.7	7224	41			
	⊕ Qto_StairFlightBaseQuantities							
	□ SGPset_Material							
	Mate	erial	Pre	Precast Concrete				

- 5. For projects with GLS requirements, submit the Productivity Plan during Construction Gateway
 - As projects are subject to more stringent productivity requirements, these shall take precedence over minimum buildability requirements
 - Productivity plan must be submitted to demonstrate compliance with the higher requirements
- 6. For projects adopting the outcome-based option, select this option in BS01 form. Fill in the necessary information under Part IV

Information to be provided under Part IV

Thank you

